AggregationΒΆ

An aggregate or aggregation is a function where the values of multiple rows are processed together to form a single summary value. For performing an aggregation, DataFusion provides the aggregate()

In [1]: from datafusion import SessionContext

In [2]: from datafusion import column, lit

In [3]: from datafusion import functions as f

In [4]: import random

In [5]: ctx = SessionContext()

In [6]: df = ctx.from_pydict(
   ...:     {
   ...:         "a": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
   ...:         "b": ["one", "one", "two", "three", "two", "two", "one", "three"],
   ...:         "c": [random.randint(0, 100) for _ in range(8)],
   ...:         "d": [random.random() for _ in range(8)],
   ...:     },
   ...:     name="foo_bar"
   ...: )
   ...: 

In [7]: col_a = column("a")

In [8]: col_b = column("b")

In [9]: col_c = column("c")

In [10]: col_d = column("d")

In [11]: df.aggregate([], [f.approx_distinct(col_c), f.approx_median(col_d), f.approx_percentile_cont(col_d, lit(0.5))])
Out[11]: 
DataFrame()
+----------------------------+--------------------------+------------------------------------------------+
| approx_distinct(foo_bar.c) | approx_median(foo_bar.d) | approx_percentile_cont(foo_bar.d,Float64(0.5)) |
+----------------------------+--------------------------+------------------------------------------------+
| 8                          | 0.5173692586537291       | 0.5173692586537291                             |
+----------------------------+--------------------------+------------------------------------------------+

When the group_by list is empty the aggregation is done over the whole DataFrame. For grouping the group_by list must contain at least one column

In [12]: df.aggregate([col_a], [f.sum(col_c), f.max(col_d), f.min(col_d)])
Out[12]: 
DataFrame()
+-----+----------------+--------------------+----------------------+
| a   | sum(foo_bar.c) | MAX(foo_bar.d)     | MIN(foo_bar.d)       |
+-----+----------------+--------------------+----------------------+
| foo | 194            | 0.8929899996979089 | 0.008786198889721097 |
| bar | 99             | 0.9082469250683034 | 0.2866188772159094   |
+-----+----------------+--------------------+----------------------+

More than one column can be used for grouping

In [13]: df.aggregate([col_a, col_b], [f.sum(col_c), f.max(col_d), f.min(col_d)])
Out[13]: 
DataFrame()
+-----+-------+----------------+--------------------+----------------------+
| a   | b     | sum(foo_bar.c) | MAX(foo_bar.d)     | MIN(foo_bar.d)       |
+-----+-------+----------------+--------------------+----------------------+
| bar | three | 22             | 0.2866188772159094 | 0.2866188772159094   |
| foo | three | 58             | 0.8929899996979089 | 0.8929899996979089   |
| foo | one   | 25             | 0.3957626236684647 | 0.23554757356318523  |
| bar | one   | 27             | 0.5646778167349309 | 0.5646778167349309   |
| foo | two   | 111            | 0.5849968559932718 | 0.008786198889721097 |
| bar | two   | 50             | 0.9082469250683034 | 0.9082469250683034   |
+-----+-------+----------------+--------------------+----------------------+