HTML Rendering in Jupyter¶
When working in Jupyter notebooks or other environments that support rich HTML display,
DataFusion DataFrames automatically render as nicely formatted HTML tables. This functionality
is provided by the _repr_html_
method, which is automatically called by Jupyter to provide
a richer visualization than plain text output.
Basic HTML Rendering¶
In a Jupyter environment, simply displaying a DataFrame object will trigger HTML rendering:
# Will display as HTML table in Jupyter
df
# Explicit display also uses HTML rendering
display(df)
Customizing HTML Rendering¶
DataFusion provides extensive customization options for HTML table rendering through the
datafusion.html_formatter
module.
Configuring the HTML Formatter¶
You can customize how DataFrames are rendered by configuring the formatter:
from datafusion.html_formatter import configure_formatter
# Change the default styling
configure_formatter(
max_cell_length=25, # Maximum characters in a cell before truncation
max_width=1000, # Maximum width in pixels
max_height=300, # Maximum height in pixels
max_memory_bytes=2097152, # Maximum memory for rendering (2MB)
min_rows_display=20, # Minimum number of rows to display
repr_rows=10, # Number of rows to display in __repr__
enable_cell_expansion=True,# Allow expanding truncated cells
custom_css=None, # Additional custom CSS
show_truncation_message=True, # Show message when data is truncated
style_provider=None, # Custom styling provider
use_shared_styles=True # Share styles across tables
)
The formatter settings affect all DataFrames displayed after configuration.
Custom Style Providers¶
For advanced styling needs, you can create a custom style provider:
from datafusion.html_formatter import StyleProvider, configure_formatter
class MyStyleProvider(StyleProvider):
def get_table_styles(self):
return {
"table": "border-collapse: collapse; width: 100%;",
"th": "background-color: #007bff; color: white; padding: 8px; text-align: left;",
"td": "border: 1px solid #ddd; padding: 8px;",
"tr:nth-child(even)": "background-color: #f2f2f2;",
}
def get_value_styles(self, dtype, value):
"""Return custom styles for specific values"""
if dtype == "float" and value < 0:
return "color: red;"
return None
# Apply the custom style provider
configure_formatter(style_provider=MyStyleProvider())
Creating a Custom Formatter¶
For complete control over rendering, you can implement a custom formatter:
from datafusion.html_formatter import Formatter, get_formatter
class MyFormatter(Formatter):
def format_html(self, batches, schema, has_more=False, table_uuid=None):
# Create your custom HTML here
html = "<div class='my-custom-table'>"
# ... formatting logic ...
html += "</div>"
return html
# Set as the global formatter
configure_formatter(formatter_class=MyFormatter)
# Or use the formatter just for specific operations
formatter = get_formatter()
custom_html = formatter.format_html(batches, schema)
Managing Formatters¶
Reset to default formatting:
from datafusion.html_formatter import reset_formatter
# Reset to default settings
reset_formatter()
Get the current formatter settings:
from datafusion.html_formatter import get_formatter
formatter = get_formatter()
print(formatter.max_rows)
print(formatter.theme)
Contextual Formatting¶
You can also use a context manager to temporarily change formatting settings:
from datafusion.html_formatter import formatting_context
# Default formatting
df.show()
# Temporarily use different formatting
with formatting_context(max_rows=100, theme="dark"):
df.show() # Will use the temporary settings
# Back to default formatting
df.show()
Memory and Display Controls¶
You can control how much data is displayed and how much memory is used for rendering:
configure_formatter(
max_memory_bytes=4 * 1024 * 1024, # 4MB maximum memory for display
min_rows_display=50, # Always show at least 50 rows
repr_rows=20 # Show 20 rows in __repr__ output
)
These parameters help balance comprehensive data display against performance considerations.
Best Practices¶
Global Configuration: Use
configure_formatter()
at the beginning of your notebook to set up consistent formatting for all DataFrames.Memory Management: Set appropriate
max_memory_bytes
limits to prevent performance issues with large datasets.Shared Styles: Keep
use_shared_styles=True
(default) for better performance in notebooks with multiple DataFrames.Reset When Needed: Call
reset_formatter()
when you want to start fresh with default settings.Cell Expansion: Use
enable_cell_expansion=True
when cells might contain longer content that users may want to see in full.
Additional Resources¶
DataFrames - Complete guide to using DataFrames
IO - I/O Guide for reading data from various sources
Data Sources - Comprehensive data sources guide
CSV - CSV file reading
Parquet - Parquet file reading
JSON - JSON file reading
Avro - Avro file reading
Custom Table Provider - Custom table providers
API Reference - Full API reference