DataFrames

Overview

The DataFrame class is the core abstraction in DataFusion that represents tabular data and operations on that data. DataFrames provide a flexible API for transforming data through various operations such as filtering, projection, aggregation, joining, and more.

A DataFrame represents a logical plan that is lazily evaluated. The actual execution occurs only when terminal operations like collect(), show(), or to_pandas() are called.

Creating DataFrames

DataFrames can be created in several ways:

  • From SQL queries via a SessionContext:

    from datafusion import SessionContext
    
    ctx = SessionContext()
    df = ctx.sql("SELECT * FROM your_table")
    
  • From registered tables:

    df = ctx.table("your_table")
    
  • From various data sources:

    # From CSV files (see :ref:`io_csv` for detailed options)
    df = ctx.read_csv("path/to/data.csv")
    
    # From Parquet files (see :ref:`io_parquet` for detailed options)
    df = ctx.read_parquet("path/to/data.parquet")
    
    # From JSON files (see :ref:`io_json` for detailed options)
    df = ctx.read_json("path/to/data.json")
    
    # From Avro files (see :ref:`io_avro` for detailed options)
    df = ctx.read_avro("path/to/data.avro")
    
    # From Pandas DataFrame
    import pandas as pd
    pandas_df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
    df = ctx.from_pandas(pandas_df)
    
    # From Arrow data
    import pyarrow as pa
    batch = pa.RecordBatch.from_arrays(
        [pa.array([1, 2, 3]), pa.array([4, 5, 6])],
        names=["a", "b"]
    )
    df = ctx.from_arrow(batch)
    

For detailed information about reading from different data sources, see the I/O Guide. For custom data sources, see Custom Table Provider.

Common DataFrame Operations

DataFusion’s DataFrame API offers a wide range of operations:

from datafusion import column, literal

# Select specific columns
df = df.select("col1", "col2")

# Select with expressions
df = df.select(column("a") + column("b"), column("a") - column("b"))

# Filter rows
df = df.filter(column("age") > literal(25))

# Add computed columns
df = df.with_column("full_name", column("first_name") + literal(" ") + column("last_name"))

# Multiple column additions
df = df.with_columns(
    (column("a") + column("b")).alias("sum"),
    (column("a") * column("b")).alias("product")
)

# Sort data
df = df.sort(column("age").sort(ascending=False))

# Join DataFrames
df = df1.join(df2, on="user_id", how="inner")

# Aggregate data
from datafusion import functions as f
df = df.aggregate(
    [],  # Group by columns (empty for global aggregation)
    [f.sum(column("amount")).alias("total_amount")]
)

# Limit rows
df = df.limit(100)

# Drop columns
df = df.drop("temporary_column")

Terminal Operations

To materialize the results of your DataFrame operations:

# Collect all data as PyArrow RecordBatches
result_batches = df.collect()

# Convert to various formats
pandas_df = df.to_pandas()        # Pandas DataFrame
polars_df = df.to_polars()        # Polars DataFrame
arrow_table = df.to_arrow_table() # PyArrow Table
py_dict = df.to_pydict()          # Python dictionary
py_list = df.to_pylist()          # Python list of dictionaries

# Display results
df.show()                         # Print tabular format to console

# Count rows
count = df.count()

HTML Rendering

When working in Jupyter notebooks or other environments that support HTML rendering, DataFrames will automatically display as formatted HTML tables. For detailed information about customizing HTML rendering, formatting options, and advanced styling, see HTML Rendering in Jupyter.

Core Classes

DataFrame

The main DataFrame class for building and executing queries.

See: datafusion.DataFrame

SessionContext

The primary entry point for creating DataFrames from various data sources.

Key methods for DataFrame creation:

  • read_csv() - Read CSV files

  • read_parquet() - Read Parquet files

  • read_json() - Read JSON files

  • read_avro() - Read Avro files

  • table() - Access registered tables

  • sql() - Execute SQL queries

  • from_pandas() - Create from Pandas DataFrame

  • from_arrow() - Create from Arrow data

See: datafusion.SessionContext

Expression Classes

Expr

Represents expressions that can be used in DataFrame operations.

See: datafusion.Expr

Functions for creating expressions:

Built-in Functions

DataFusion provides many built-in functions for data manipulation:

For a complete list of available functions, see the datafusion.functions module documentation.