Reading Explain Plans¶
Introduction¶
This section describes of how to read a DataFusion query plan. While fully comprehending all details of these plans requires significant expertise in the DataFusion engine, this guide will help you get started with the basics.
Datafusion executes queries using a query plan
. To see the plan without
running the query, add the keyword EXPLAIN
to your SQL query or call the
DataFrame::explain method
Example: Select and filter¶
In this section, we run example queries against the hits.parquet
file. See
below) for information on how to get this file.
Let’s see how DataFusion runs a query that selects the top 5 watch lists for the
site http://domcheloveplanet.ru/
:
EXPLAIN SELECT "WatchID" AS wid, "hits.parquet"."ClientIP" AS ip
FROM 'hits.parquet'
WHERE starts_with("URL", 'http://domcheloveplanet.ru/')
ORDER BY wid ASC, ip DESC
LIMIT 5;
The output will look like
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| plan_type | plan |
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| logical_plan | Sort: wid ASC NULLS LAST, ip DESC NULLS FIRST, fetch=5 |
| | Projection: hits.parquet.WatchID AS wid, hits.parquet.ClientIP AS ip |
| | Filter: starts_with(hits.parquet.URL, Utf8("http://domcheloveplanet.ru/")) |
| | TableScan: hits.parquet projection=[WatchID, ClientIP, URL], partial_filters=[starts_with(hits.parquet.URL, Utf8("http://domcheloveplanet.ru/"))] |
| physical_plan | SortPreservingMergeExec: [wid@0 ASC NULLS LAST,ip@1 DESC], fetch=5 |
| | SortExec: TopK(fetch=5), expr=[wid@0 ASC NULLS LAST,ip@1 DESC], preserve_partitioning=[true] |
| | ProjectionExec: expr=[WatchID@0 as wid, ClientIP@1 as ip] |
| | CoalesceBatchesExec: target_batch_size=8192 |
| | FilterExec: starts_with(URL@2, http://domcheloveplanet.ru/) |
| | ParquetExec: file_groups={16 groups: [[hits.parquet:0..923748528], ...]}, projection=[WatchID, ClientIP, URL], predicate=starts_with(URL@13, http://domcheloveplanet.ru/) |
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2 row(s) fetched.
Elapsed 0.060 seconds.
There are two sections: logical plan and physical plan
Logical Plan: is a plan generated for a specific SQL query, DataFrame, or other language without the
knowledge of the underlying data organization.Physical Plan: is a plan generated from a logical plan along with consideration of the hardware configuration (e.g number of CPUs) and the underlying data organization (e.g number of files). This physical plan is specific to your hardware configuration and your data. If you load the same data to different hardware with different configurations, the same query may generate different query plans.
Understanding a query plan can help to you understand its performance. For example, when the plan shows your query reads many files, it signals you to either add more filter in the query to read less data or to modify your file design to make fewer but larger files. This document focuses on how to read a query plan. How to make a query run faster depends on the reason it is slow and beyond the scope of this document.
Query plans are trees¶
A query plan is an upside down tree, and we always read from bottom up. The physical plan in Figure 1 in tree format will look like
▲
│
│
┌─────────────────────────────────────────────────┐
│ SortPreservingMergeExec │
│ [wid@0 ASC NULLS LAST,ip@1 DESC] │
│ fetch=5 │
└─────────────────────────────────────────────────┘
▲
│
┌─────────────────────────────────────────────────┐
│ SortExec TopK(fetch=5), │
│ expr=[wid@0 ASC NULLS LAST,ip@1 DESC], │
│ preserve_partitioning=[true] │
└─────────────────────────────────────────────────┘
▲
│
┌─────────────────────────────────────────────────┐
│ ProjectionExec │
│ expr=[WatchID@0 as wid, ClientIP@1 as ip] │
└─────────────────────────────────────────────────┘
▲
│
┌─────────────────────────────────────────────────┐
│ CoalesceBatchesExec │
└─────────────────────────────────────────────────┘
▲
│
┌─────────────────────────────────────────────────┐
│ FilterExec │
│ starts_with(URL@2, http://domcheloveplanet.ru/) │
└─────────────────────────────────────────────────┘
▲
│
┌────────────────────────────────────────────────┐
│ ParquetExec │
│ hits.parquet (filter = ...) │
└────────────────────────────────────────────────┘
Each node in the tree/plan ends with Exec
and is sometimes also called an operator
or ExecutionPlan
where data is
processed, transformed and sent up.
First, data in parquet the
hits.parquet
file us read in parallel using 16 cores in 16 “partitions” (more on this later) fromParquetExec
, which applies a first pass at filtering during the scan.Next, the output is filtered using
FilterExec
to ensure only rows wherestarts_with(URL, 'http://domcheloveplanet.ru/')
evaluates to true are passed onThe
CoalesceBatchesExec
then ensures that the data is grouped into larger batches for processingThe
ProjectionExec
then projects the data to rename theWatchID
andClientIP
columns towid
andip
respectively.The
SortExec
then sorts the data bywid ASC, ip DESC
. TheTopk(fetch=5)
indicates that a special implementation is used that only tracks and emits the top 5 values in each partition.Finally the
SortPreservingMergeExec
merges the sorted data from all partitions and returns the top 5 rows overall.
Understanding large query plans¶
A large query plan may look intimidating, but you can quickly understand what it does by following these steps
As always, read from bottom up, one operator at a time.
Understand the job of this operator by reading the Physical Plan documentation.
Understand the input data of the operator and how large/small it may be.
Understand how much data that operator produces and what it would look like.
If you can answer those questions, you will be able to estimate how much work
that plan has to do and thus how long it will take. However, the EXPLAIN
just
shows you the plan without executing it.
If you want to know more about how much work each operator in query plan does,
you can use the EXPLAIN ANALYZE
to get the explain with runtime added (see
next section)
More Debugging Information: EXPLAIN VERBOSE
¶
If the plan has to read too many files, not all of them will be shown in the
EXPLAIN
. To see them, use EXPLAIN VEBOSE
. Like EXPLAIN
, EXPLAIN VERBOSE
does not run the query. Instead it shows the full explain plan, with information
that is omitted from the default explain, as well as all intermediate physical
plans DataFusion generates before returning. This mode can be very helpful for
debugging to see why and when DataFusion added and removed operators from a plan.
Execution Counters: EXPLAIN ANALYZE
¶
During execution, DataFusion operators collect detailed metrics. You can access
them programmatically via ExecutionPlan::metrics
as well as with the
EXPLAIN ANALYZE
command. For example here is the same query query as
above but with EXPLAIN ANALYZE
(note the output is edited for clarity)
> EXPLAIN ANALYZE SELECT "WatchID" AS wid, "hits.parquet"."ClientIP" AS ip
FROM 'hits.parquet'
WHERE starts_with("URL", 'http://domcheloveplanet.ru/')
ORDER BY wid ASC, ip DESC
LIMIT 5;
+-------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| plan_type | plan |
+-------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Plan with Metrics | SortPreservingMergeExec: [wid@0 ASC NULLS LAST,ip@1 DESC], fetch=5, metrics=[output_rows=5, elapsed_compute=2.375µs] |
| | SortExec: TopK(fetch=5), expr=[wid@0 ASC NULLS LAST,ip@1 DESC], preserve_partitioning=[true], metrics=[output_rows=75, elapsed_compute=7.243038ms, row_replacements=482] |
| | ProjectionExec: expr=[WatchID@0 as wid, ClientIP@1 as ip], metrics=[output_rows=811821, elapsed_compute=66.25µs] |
| | FilterExec: starts_with(URL@2, http://domcheloveplanet.ru/), metrics=[output_rows=811821, elapsed_compute=1.36923816s] |
| | ParquetExec: file_groups={16 groups: [[hits.parquet:0..923748528], ...]}, projection=[WatchID, ClientIP, URL], predicate=starts_with(URL@13, http://domcheloveplanet.ru/), metrics=[output_rows=99997497, elapsed_compute=16ns, ... bytes_scanned=3703192723, ... time_elapsed_opening=308.203002ms, time_elapsed_scanning_total=8.350342183s, ...] |
+-------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row(s) fetched.
Elapsed 0.720 seconds.
In this case, DataFusion actually ran the query, but discarded any results, and
instead returned an annotated plan with a new field, metrics=[...]
Most operators have the common metrics output_rows
and elapsed_compute
and
some have operator specific metrics such as ParquetExec
which has
bytes_scanned=3703192723
. Note that times and counters are reported across all
cores, so if you have 16 cores, the time reported is the sum of the time taken
by all 16 cores.
Again, reading from bottom up:
ParquetExec
output_rows=99997497
: A total 99.9M rows were producedbytes_scanned=3703192723
: Of the 14GB file, 3.7GB were actually read (due to projection pushdown)time_elapsed_opening=308.203002ms
: It took 300ms to open the file and prepare to read ittime_elapsed_scanning_total=8.350342183s
: It took 8.3 seconds of CPU time (across 16 cores) to actually decode the parquet data
FilterExec
output_rows=811821
: Of the 99.9M rows at its input, only 811K rows passed the filter and were produced at the outputelapsed_compute=1.36923816s
: In total, 1.36s of CPU time (across 16 cores) was spend evaluating the filter
CoalesceBatchesExec
output_rows=811821
,elapsed_compute=12.873379ms
: Produced 811K rows in 13ms
ProjectionExec
output_rows=811821, elapsed_compute=66.25µs
: Produced 811K rows in 66µs (microseconds). This projection is almost instantaneous as it does not manipulate any data
SortExec
output_rows=75
: Produced 75 rows in total. Each of 16 cores could produce up to 5 rows, but in this case not all cores did.elapsed_compute=7.243038ms
: 7ms was used to determine the top 5 rowsrow_replacements=482
: Internally, the TopK operator updated its top list 482 times
SortPreservingMergeExec
output_rows=5
,elapsed_compute=2.375µs
: Produced the final 5 rows in 2.375µs (microseconds)
Partitions and Execution¶
DataFusion determines the optimal number of cores to use as part of query
planning. Roughly speaking, each “partition” in the plan is run independently using
a separate core. Data crosses between cores only within certain operators such as
RepartitionExec
, CoalescePartitions
and SortPreservingMergeExec
You can read more about this in the Partitoning Docs.
Example of an Aggregate Query¶
Let us delve into an example query that aggregates data from the hits.parquet
file. For example, this query from ClickBench finds the top 10 users by their
number of hits:
SELECT "UserID", COUNT(*)
FROM 'hits.parquet'
GROUP BY "UserID"
ORDER BY COUNT(*) DESC
LIMIT 10;
We can again see the query plan by using EXPLAIN
:
> EXPLAIN SELECT "UserID", COUNT(*) FROM 'hits.parquet' GROUP BY "UserID" ORDER BY COUNT(*) DESC LIMIT 10;
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| plan_type | plan |
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| logical_plan | Limit: skip=0, fetch=10 |
| | Sort: count(*) DESC NULLS FIRST, fetch=10 |
| | Aggregate: groupBy=[[hits.parquet.UserID]], aggr=[[count(Int64(1)) AS count(*)]] |
| | TableScan: hits.parquet projection=[UserID] |
| physical_plan | GlobalLimitExec: skip=0, fetch=10 |
| | SortPreservingMergeExec: [count(*)@1 DESC], fetch=10 |
| | SortExec: TopK(fetch=10), expr=[count(*)@1 DESC], preserve_partitioning=[true] |
| | AggregateExec: mode=FinalPartitioned, gby=[UserID@0 as UserID], aggr=[count(*)] |
| | CoalesceBatchesExec: target_batch_size=8192 |
| | RepartitionExec: partitioning=Hash([UserID@0], 10), input_partitions=10 |
| | AggregateExec: mode=Partial, gby=[UserID@0 as UserID], aggr=[count(*)] |
| | ParquetExec: file_groups={10 groups: [[hits.parquet:0..1477997645], [hits.parquet:1477997645..2955995290], [hits.parquet:2955995290..4433992935], [hits.parquet:4433992935..5911990580], [hits.parquet:5911990580..7389988225], ...]}, projection=[UserID] |
| | |
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
For this query, let’s again read the plan from the bottom to the top:
Logical plan operators
TableScan
hits.parquet
: Scans data from the filehits.parquet
.projection=[UserID]
: Reads only theUserID
column
Aggregate
groupBy=[[hits.parquet.UserID]]
: Groups byUserID
column.aggr=[[count(Int64(1)) AS count(*)]]
: Applies theCOUNT
aggregate on each distinct group.
Sort
count(*) DESC NULLS FIRST
: Sorts the data in descending count order.fetch=10
: Returns only the first 10 rows.
Limit
skip=0
: Does not skip any data for the results.fetch=10
: Limits the results to 10 values.
Physical plan operators
ParquetExec
file_groups={10 groups: [...]}
: Reads 10 groups in parallel fromhits.parquet
file. (The example above was run on a machine with 10 cores.)projection=[UserID]
: Pushes down projection of theUserID
column. The parquet format is columnar and the DataFusion reader only decodes the columns required.
AggregateExec
mode=Partial
Runs a partial aggregation in parallel across each of the 10 partitions from theParquetExec
immediately after reading.gby=[UserID@0 as UserID]
: RepresentsGROUP BY
in the physical plan and groups together the same values ofUserID
.aggr=[count(*)]
: Applies theCOUNT
aggregate on all rows for each group.
RepartitionExec
partitioning=Hash([UserID@0], 10)
: Divides the input into into 10 (new) output partitions based on the value ofhash(UserID)
. You can read more about this in the partitioning documentation.input_partitions=10
: Number of input partitions.
CoalesceBatchesExec
target_batch_size=8192
: Combines smaller batches in to larger batches. In this case approximately 8192 rows in each batch.
AggregateExec
mode=FinalPartitioned
: Performs the final aggregation on each group. See the documentation on multi phase grouping for more information.gby=[UserID@0 as UserID]
: Groups byUserID
.aggr=[count(*)]
: Applies theCOUNT
aggregate on all rows for each group.
SortExec
TopK(fetch=10)
: Use a special “TopK” sort that keeps only the largest 10 values in memory at a time. You can read more about this in the TopK documentation.expr=[count(*)@1 DESC]
: Sorts all rows in descending order. Note this represents theORDER BY
in the physical plan.preserve_partitioning=[true]
: The sort is done in parallel on each partition. In this case the top 10 values are found for each of the 10 partitions, in parallel.
SortPreservingMergeExec
[count(*)@1 DESC]
: This operator merges the 10 distinct streams into a single stream using this expression.fetch=10
: Returns only the first 10 rows
GlobalLimitExec
skip=0
: Does not skip any rowsfetch=10
: Returns only the first 10 rows, denoted byLIMIT 10
in the query.
Data in this Example¶
The examples in this section use data from ClickBench, a benchmark for data
analytics. The examples are in terms of the 14GB hits.parquet
file and can be
downloaded from the website or using the following commands:
cd benchmarks
./bench.sh data clickbench_1
***************************
DataFusion Benchmark Runner and Data Generator
COMMAND: data
BENCHMARK: clickbench_1
DATA_DIR: /Users/andrewlamb/Software/datafusion2/benchmarks/data
CARGO_COMMAND: cargo run --release
PREFER_HASH_JOIN: true
***************************
Checking hits.parquet...... found 14779976446 bytes ... Done
Then you can run datafusion-cli
to get plans:
cd datafusion/benchmarks/data
datafusion-cli
DataFusion CLI v41.0.0
> select count(*) from 'hits.parquet';
+----------+
| count(*) |
+----------+
| 99997497 |
+----------+
1 row(s) fetched.
Elapsed 0.062 seconds.
>